Multiplexed Sensor for Synthesis Gas Composition and Temperature

DOE University Coal Research Project Initiated September 2004 DOE Grant #DE-FG26-04NT42172

Steven G. Buckley, Reza Gharavi, Marco Leon, and Ariel Schuger

Department of Mechanical and Aerospace Engineering
University of California, San Diego

Contractors Meeting June 6-7, 2006

Outline of talk

- Introduction and motivation
- Abbreviated description of the sensing technique
- Sensor design
- Development of new spectroscopy
- Progress on measurements
- Upcoming work

The promise of gasification

- "Baseline" coal plants are ~33-35% thermal efficiency
- Integrated combinedcycle plants may exceed 50% thermal efficiency
- May aid in CO₂ sequestration
- Fischer-Tropsch fuels from syngas

Effluent

The goals of this project

- Integrated high-speed sensor that can measure composition of important major and minor species in real time and *in situ*.
- Targeted species: CH₄, H₂O, CO, CO₂, NH₃, H₂S

→ Challenges

- High, variable temperature
- High, variable pressure
- Sensitivity with short pathlength
- Rugged design

Benefits to tunable diode laser approach

- Near-infrared tunable diode lasers have been developed by large telecommunications investment
 - Relatively inexpensive hardware
 - Durable hardware
- Direct optical measurements are obtained in real-time without perturbations to concentrations that might occur in a sampling system
- Measurements can easily be performed at several hundred Hz
- Laser light can be multiplexed and fiber-coupled
- Multiple species can be simultaneously measured with one detection system

Familiar ground: Absorption spectroscopy

Beer's law

$$\frac{dI(\overline{v})}{I_0(\overline{v})} = -k(\overline{v}) \cdot C \cdot dx$$

- Concentration measurements
 - Integrated absorption of spectral line

Calibration

$$\overline{A} = \int_{line} k(\overline{v})CLd\overline{v} = \overline{k}CL$$

$$C_{sample} = rac{\overline{A}_{sample}}{\overline{A}_{calibration}} \cdot C_{calibration} \cdot r_{path}$$

Theory of absorption spectroscopy

Key: Wavelength Modulation Spectroscopy (WMS)

Problem: difficulty in detecting a small dip in a large signal, particularly with a fluctuating background

Attributes of WMS

- Increases sensitivity by 2-3 orders of magnitude
- Eliminates most flow-related sources of noise
- Allows frequency-domain multiplexing and demodulation

Direct absorption vs. "Wavelength modulation"

Typical absorption line shape

Function of collisional and Doppler broadening (Lorentzian shape) + (Gaussian shape)

Direct absorption

$$I/I_0 = \exp(-S_T g(v-v_0) LP_{abs})$$

Beer's law absorption

Problem: measurement of small signal on large background

Wavelength modulation

$$\sim$$

kHz rates modulation

- Modulation rejects flow-related noise, electrical noise, etc., typically 1/f
- Detection of 1f, 2f, etc. signals with lock-in amplifier

How WMS works

• Harmonic signals look like derivatives of the absorption line, hence sometimes called "derivative spectroscopy"

Comparison of direct absorption, 2f, 3f, and 4f signals of 200 torr CO₂

How is the signal processed?

Experiments measure the temperature and pressure broadening characteristics of each absorption line

• Schematic of the experimental apparatus for line strength and pressure broadening measurements (at different temperatures) is shown below

Example: Line strength measurements as a function of temperature

 Measurements of R(4) CH₄ transition are fit to model to derive line strengths as a function of temperature

Example: Line strength measurements as a function of temperature

• Measured individual line strengths of CH₄ R(4) manifold at T=296 K (Should be pressure-independent)

Example: Pressure broadening measurement for CH₄ transitions

• Each gas component in the mixture contributes independently to line broadening — must be measured

WMS at high pressure: Line-locked measurements

- Increased broadening dramatically increases line width at high pressures
- Most near-infrared TDLs only tune
 1-2 cm⁻¹

- Solution eliminate the "sweep" signal, only modulate the laser about the line center
- → Relies on having very accurate models of the line for interpretation of the signal

TDL-based temperature measurements

Schematic variation of line strength of two absorption lines with temperature

$$R_{abs}(T) = \frac{S_i(T)}{S_i(T)}$$

TDL H₂O / Temperature measurement

Measured absorbance of selected H₂O transitions (near 1478 nm) at two different temperatures

TDL H₂O / Temperature measurement

Measured absorption line strengths of the selected H₂O transitions vs. temperature

TDL H₂O / Temperature measurement

Variation of absorption ratio vs. temperature

Accurate models of spectral lines are crucial for variable conditions

Overall sensor architecture

All accomplished in LabviewTM

Progress to date in sensor development

H₂O, CH₄, CO, and CO₂ spectroscopy are completed

- A new long-pathlength, high-pressure cell was constructed for these measurements
- We have complete pressure broadening and temperature data for these species

• NH₃ and H₂S are in progress

- Lasers have been received, lines have been selected
- Initial spectra have been acquired, characterization of pressure broadening and temperature data is proceeding
- Difficulty with toxicity of species, and complexity of spectra
 - A cell and flow system for these toxic gases has been constructed

Completed hardware

- Long path, high-temperature cell allows more sensitive measurements
- High-pressure cell (not shown) is used to investigate agreement of model and experiment at high pressure
- Electronics box controls multiple lasers

"Difficult" ammonia spectra measured in the lab

Very complicated

- Many peaks
- Databases are incomplete/ incorrect
- In the lab, cannot test at high temperature with H₂O present
 - Constructed multiplepath experiment
- Top = low pressure,
 Bottom = atmospheric
 pressure

We have constructed a model for NH₃ spectra

- Upper trace → total spectra, predicted versus modeled
- Lower trace → individual modeled lines
- For quantification, it was necessary to model 21 individual lines
- Model particularly useful for pressure-broadened measurements
- Time-consuming to construct
- Similar effort underway for H₂S

Progress to date: Design and construction

- National Instruments' PXI system and ILX Lightwave temperature controller / diode driver have been integrated into system
- Two electronics boxes have been designed, built, and tested
 - a modulation box that takes a single sweep input and superimposes 4 modulation signals of fixed frequency and variable amplitude
 - a reference box that normalizes the detector signal by the input laser power to correct for fluctuations and nonlinearities in the laser signal
- Hardware is essentially in final form

Advanced LabviewTM software built and tested

Entire assembly in the lab

System allows simultaneous recording of multiple real-time spectra on a single detector

Field Trials: September 2005 and April, 2006

- The UCSD campus (~23,000 students, 1,200 acres) generates most of its own power using 2 Solar Turbines Titan 130, 13 MW gas turbines
- Internal funding supported real-time measurements on the turbines for emissions monitoring and oscillation detection
- CO₂, H₂O, and temperature were monitored

Key results

- → Each of these was a "projected milestone" last year
- H₂O, temperature, CO, CO₂ and CH₄ have been simultaneously measured and quantified at high temperature using collisional broadening and line strengths measured in the laboratory
- NH₃ and H₂S spectra have been obtained, measurements of parameters and modeling are both proceeding
- Architecture is finished and tested
- LabviewTM lock-in program coupled with data acquisition system has been successfully tested
- On-campus field trials have been helpful to eliminate errors in system and improve software

Upcoming milestones

- Finish NH₃ and H₂S spectroscopy
- Add calibration to software so that reporting can be in "real units"
- Final measurements on an operating gasifier

Summary and Conclusions

- Project is making substantial progress with respect to research and development goals
- Hardware development and spectroscopy development have been mostly completed
 - CH₄, H₂O, CO, CO₂ spectroscopy all finished
 - LabviewTM software replaced substantial hardware, adds versatility
 - Extra time was required for NH₃ and H₂S, beyond proposal estimates
- Second field trial appears to have been successful
 - Quantification in process
 - Calibration will be incorporated into softrware
- Final goal: test on an operating gasifier
 - Have been in touch with Dr. Tom Gale at the Southern Company gasifier about the potential for measurements there

Selected recent and in-preparation papers

- M. Gharavi and S.G. Buckley, "Diode Laser Absorption Spectroscopy Measurement of Line Strengths and Pressure Broadening Coefficients of the Methane $2v_3$ Band at Elevated Temperatures," *Journal of Molecular Spectroscopy* 229 pp 78-88 (2005).
- M. Gharavi and S.G. Buckley, "Near-infrared optical sensor for monitoring NH₃," to be presented, FACSS 2006.
- M. Gharavi and S.G. Buckley, "Pressure broadening parameters of H_2O absorption transitions of $2v_1$ and $2v_2+v_3$ bands at elevated temperatures," submitted, Journal of Quantitative Spectroscopy & Radiative Transfer.
- M. Gharavi and S.G. Buckley, "Wavelength modulation spectroscopy for temperature and H₂O concentration measurement using a single diode laser," *submitted*, *Applied Optics*.
- M. Gharavi, M. Leon, and S.G. Buckley, "Real-Time Measurement of H₂O, CO, and Temperature in an Operating Gas Turbine," to be submitted to *Measurement Science and Technology*.
- A. Schuger, M. Gharavi, and S.G. Buckley, "In-Flame, Real-Time Measurement of H₂O, CO, OH, and Temperature," to be submitted to *Combustion Science and Technology*.
- M. Gharavi, C. Lao, and S.G. Buckley, "Line Strengths and Pressure Broadening of Selected Transitions of CO and CO₂," to be submitted to *Journal of Molecular Spectrosocpy*.

Thanks for your attention!

We appreciate the kind assistance of our program manager Robie Lewis and the support of DOE on this project

Additional slides

National Instruments data acquisition system

- PXI system has integrated WindowsTM-based microprocessor, 6 channels of 500 kHz analog input and 2 channels of analog output
- Completely configurable using LabviewTM graphical programming language designed for data acquisition
- Enough horsepower to do some real-time computations
- Rugged and portable

Laser selection

- Modeled and experimental spectra are consulted to find best lines in near infrared
- Lines are checked for interferences from H₂O and other gases
- Laser manufacturers are contacted to determine laser availability

